

Development and Validation of an Alternate Procedure for PCDD/PCDF. Adaptation of HRMS Method 1613B Protocols and Criteria to MS/MS

Coreen Hamilton

SGS AXYS Analytical Services Ltd.

ACKNOWLEDGEMENTS

Lem Walker, EPA Office of Water, ATP Coordinator

Joe Romano (Waters) and Tarun Anumol (Agilent)

SGS AXYS Senior Chemists; Xinhui Xie, Angie Schlak, Kristen Bowes and Robert Tones, each with decades of experience with HRMS analyses

SGS AXYS METHOD 16130

QUESTIONS

- Why is a new method needed?
- Does MS/MS have the required sensitivity?
- Does MS/MS have the required selectivity?
- Do other environmental contaminants interfere?
- Can the detector system handle the matrix background in real samples?

SGS AXYS

DEVELOPMENT OF A METHOD FOR PCDD/F ANALYSIS BY GC-MS/MS

- Verify operating parameters: Instrument set up and control, MRM transitions, product ions ratios
- Confirm QC criteria that are not HRMS-specific, e.g. sensitivity, linearity
- Adapt HR-specific QC Protocols to MS/MS e.g. detector specificity and stability (mass resolution and lock mass) monitoring, qualitative identification criteria
- Investigate potential interferences PCBs, chlorodiphenyl ethers
- Monitor Performance on Real Samples

MRM TRANSITIONS AND RATIOS

Oraciae Mariterad	Precursor m/z	Transition Product ³	QC Limit ¹	
Species Monitorea.	Primary/Secondary	Ratio ⁴	Lower	Upper
Cl ₄ CDD ²	(M+2)/M	0.96	0.82	1.10
Cl₄CDF	(M+2)/M	0.96	0.82	1.10
Cl₅CDD	M/(M+2)	0.78	0.66	0.90
Cl₅CDF	M/(M+2)	0.78	0.66	0.90
Cl ₆ CDD	(M+4)/(M+2)	0.64	0.54	0.74
Cl ₆ CDF	(M+4)/(M+2)	0.64	0.54	0.74
Cl ₇ CDD	(M+4)/(M+2)	0.80	0.68	0.92
Cl ₇ CDF	(M+4)/(M+2)	0.80	0.68	0.92
Cl ₈ CDD	(M+4)/(M+2)	0.96	0.82	1.10
Cl ₈ CDF	(M+4)/(M+2)	0.96	0.82	1.10

QC limits represent ±15% windows around the theoretical ion abundance ratios.

Does not apply to ³⁷Cl₄-2,3,7,8-TCDD (clean-up standard).

Product ions are due to loss of [CO³⁵Cl].

Transition Product ion ratios are calculated as secondary ion/primary ion.

USE OF A REFERENCE COMPOUND TO MONITOR DETECTOR RESPONSE STABILITY

- To detect suppression of detector response by sample matrix replacement for HRMS lock mass monitoring requirement
- Bleed a reference compound into the detector system throughout run and monitor its response. Expect it to be constant.
- Select PFTBA (the tuning compound). Large number of masses available.
- Select 414.0 > 264.0 transition due to good response and appropriate mass range. Monitor 264.0 response continuously.

AXYS USE OF A REFERENCE COMPOUND TO MONITOR DETECTOR RESPONSE STABILITY

SGS

- To detect suppression of detector response by sample matrix – replacement for HRMS lock mass monitoring requirement
- Bleed a reference compound into the detector system throughout run and monitor its response. Expect it to be constant
- Select PFTBA (the tuning compound). Large number of masses available
- Select 414.0 > 264.0 transition due to good response and appropriate mass range. Monitor 264.0 response continuously

SGS AXYS HRMS ANALYSIS OF "DIRTY" SEDIMENT EXTRACT-LOCK MASS IONS IN 5 FUNCTIONS

MS/MS REFERENCE COMPOUND RESPONSE IN 5 FUNCTIONS

HRMS LOCK MASS FUNCTIONS AFTER EXTRA SAMPLE CLEANUP

1,WG64989,1.0/10uL DX8Y_029S04 100_21.7721.92.22.58 23.69.24.28.24.93_25.26.25.88	27.31 27.66 28.53	S after	29-Aug-2018 10:32:22 1: MRM of 11 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring) 6.79e6
DXBY_0229S04	27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.0 28.70 29.06 30.33.30.52 31.82 32.53 33.25 33.92.34.05 35.18 ^{36.01} 36.64 37.0 for for a comparison of the com	0 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 10 38.04 ³⁸ .29	47.00 48.00 49.00 50.00 2: MRM of 10 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring) 7.04e6
21.00 22.00 23.00 24.00 25.00 26.00 DX8Y_029S04	27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.0	0 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 38.39 38.73 39.09 40.08 40.74 41.08 41.75 24.6543.19 43.88.44.08	47.00 48.00 49.00 50.00 3: MRM of 10 Channels AP+ 413.98 > 263.99 (FC43 stability monitorinh) 7.12e6
21.00 22.00 23.00 24.00 25.00 26.00 DX8Y_029504	27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.0	0 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 44.66 45.48 45.77 	47.00 48.00 49.00 50.00 4. MRM of 10 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring)
21.00 22.00 23.00 24.00 25.00 26.00 DX8Y_029S04	27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.0	0 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00	47.00 48.00 49.00 50.00 5: MRM of 8 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring)
21.00 22.00 23.00 24.00 25.00 26.00	27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.0	0 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00	47.00 48.00 49.00 50.00

SGS AXYS

SGS AXYS MS/MS REFERENCE COMPOUND RESPONSE AFTER EXTRA SAMPLE CLEANUP

1,WG64989,1.0/10uL DX8Y_029504 100_217721.92 22.58 23.69 24.28 2	L29748-13 on APGC/MS/MS after	29-Aug-2018 10:32:22 1: MRM of 11 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring)
 Sc Sc 	- Alter Design Process of the contract of	6.79e6
0 21.00 22.00 23.00 24.00 2 DXBY_029S04	25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 28.70 29.06 30.33.30 62 31.82 32.53 33.25 33.9234.05 35.18 ^{36.01} 36.64 37.00 38.04 38.29	43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 2: MRM of 10 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring) 7.04e6
0 21.00 22.00 23.00 24.00 2 DX8Y_029S04 100 8	25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 38.39 38.73 39.09 40.08 40.74 41.08 41.75	43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 3: MRM of 10 Channels AP+ 413.98 > 263.99 (FC43 stability monitorinh) 7.12e6
0 21.00 22.00 23.00 24.00 2 DX8Y_029504	25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00	43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 4: MRM of 10 Channels AP+ 44.66 45.48 45.77 413.98 > 263.99 (FC43 stability monitoring)
0 21.00 22.00 23.00 24.00 2 DX8Y_029S04 100 8	25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00	43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 5: MRM of 8 Channels AP+ 413.98 > 263.99 (FC43 stability monitoring)
21.00 22.00 23.00 24.00 2	25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00	43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00

MASS RESOLUTION AND MASS ACCURACY

Demonstrate unit mass resolution and mass accuracy on an on-going basis.

How: PFTBA transition 414.0 > 264.0. Scan MS1 and MS2

Every 12 hours

Criteria for resolution: resolution of 414.0 from 415.0 and peak width at base is 1 ± 0.2 amu

MASS RESOLUTION: NOT TOO MUCH, NOT TOO LITTLE. JUST RIGHT

CAN CHLORODIPHENYL ETHERS INTERFERE?

Run Chlorodiphenyl ether standards and acquire PCDF data

- Response for selected diphenyl ethers observed in PCDF channels
- Magnitude of response depends on ionization conditions
- Monitor chlorodiphenyl ether MRMs in each function (as in HRMS)

HEXACHLORODIPHENYL ETHERS

SGS AXYS HEPTA AND OCTACHLORODIPHENYL ETHERS

DO PCBS INTERFERE?

FRAGMENTS OF HIGHER HOMOLOG PCBS

- High Concentrations of PCBs from higher levels of chlorination in extracts can give response in PCDD/PCDF channels
- Impact is minor, but if PCBs are not removed during extract cleanup then monitor MRM transitions for PCBs to detect them

Target	RT	Closely Eluting PCB	Observed Contribution
2,3,7,8-TCDF	25.32	PCB-141	0.17%
1,2,3,7,8-PeCDF	33.56	PCB-172 & PCB-192	0.06%
1,2,3,7,8-PeCDD	36.18	PCB-169	0.04%
1,2,3,4,6,7,8-HpCDF	45.54	PCB-209	0.05%

- 2 MRM transitions per analyte and labeled compound. Product ion ratios meet ±15% specifications as in 1613B.
- Two masses from molecular ion cluster as precursor masses. Product ions are from loss of [CO³⁵CI].
- MRM transitions for chlorodiphenyl ethers are included
- Reference Compound is bled into the detector throughout the run and its MRM transition is monitored throughout the run
- PFTBA response replaces HRMS lock mass monitoring, same acceptance criterion.
- 12 hour mass resolution and accuracy check using reference compound scan replaces 12 hour 10,000 mass resolution verification

METHOD VALIDATION

DEMONSTRATE EQUIVALENCY TO METHOD 1613B. TIER 3 VALIDATION

- Sensitivity
- Linearity
- MDLs 3 matrices
- IPRs matrices
- PT and Reference Samples
- Robustness
 - Real world samples: 9 samples x 4 matrices
 - Comparison to HRMS results on same extracts

SENSITIVITY

© SGS SA 2018 All Rights Reserved

SENSITIVITY

	26-Jul-19	14-Aug-18	15-Aug-18	11-Sep-18	12-Sep-18	12-Dec-18
Compound	S/N	S/N	S/N	S/N	S/N	S/N
2,3,7,8-TCDF	456	798	1032	1463	1000	328
1,2,3,7,8-PeCDF	1056	1211	1158	1132	1213	466
2,3,4,7,8-PeCDF	1192	1432	1282	1234	1451	471
1,2,3,4,7,8-HxCDF	1519	738	942	723	2634	209
1,2,3,6,7,8-HxCDF	1491	753	937	710	2856	229
2,3,4,6,7,8-HxCDF	1739	797	970	812	2863	218
1,2,3,7,8,9-HxCDF	1496	704	941	741	2825	201
1,2,3,4,6,7,8-HpCDF	978	1647	1054	1364	1714	419
1,2,3,4,7,8,9-HpCDF	945	1583	940	1437	1666	393
OCDF	6267	3933	150507	300020	217422	2352
2,3,7,8-TCDD	359	198	420	8079	1688	285
1,2,3,7,8-PeCDD	471	959	1064	1206	991	659
1,2,3,4,7,8-HxCDD	1540	2153	1731	2888	1666	277
1,2,3,6,7,8-HxCDD	1495	1966	1696	2759	1585	289
1,2,3,7,8,9-HxCDD	1404	1905	1773	2659	1595	286
1,2,3,4,6,7,8-HpCDD	2951	4089	2454	9640	2849	594
OCDD	517	344	257	1142	521	253

 Signal to Noise Ratios for the 2,3,7,8-PCDD/PCDF in Multiple 1 µL Injections of the CS1 calibration Standard

LINEARITY

%RSD of PCDD/PCDF Response Factors for Three Sets of Initial Calibration Data

Date acquired	26-Jul-18	12-Sep-18	12-Dec-18
Datafile ID	DX8Y_007	DX8Y_032	DX8Y_068B
Name	RRF %RSD	RRF %RSD	RRF %RSD
2,3,7,8-TCDF	3.7	2.8	5.7
1,2,3,7,8-PeCDF	3.5	3.3	5.4
2,3,4,7,8-PeCDF	3.0	2.3	4.5
1,2,3,4,7,8-HxCDF	3.8	3.3	5.7
1,2,3,6,7,8-HxCDF	3.9	2.2	4.8
2,3,4,6,7,8-HxCDF	3.5	2.7	5.0
1,2,3,7,8,9-HxCDF	3.8	2.5	12.8
1,2,3,4,6,7,8-HpCDF	3.1	2.6	6.9
1,2,3,4,7,8,9-HpCDF	3.2	2.4	15.4
OCDF	3.7	3.3	11.9
2,3,7,8-TCDD	3.2	3.3	5.2
1,2,3,7,8-PeCDD	2.5	2.3	5.6
1,2,3,4,7,8-HxCDD	3.1	2.6	4.8
1,2,3,6,7,8-HxCDD	2.9	3.3	4.5
1,2,3,7,8,9-HxCDD	3.6	2.3	8.8
1,2,3,4,6,7,8-HpCDD	2.8	3.2	13.9
OCDD	4.1	3.4	14.6
13C-2,3,7,8-TCDF	2.2	2.0	4.7

26-Jul-18	12-Sep-18	12-Dec-18
DX8Y_007	DX8Y_032	DX8Y_068B
RRF %RSD	RRF %RSD	RRF %RSD
3.1	4.5	6.6
2.7	4.0	7.7
1.7	1.9	3.7
1.6	1.7	3.7
1.7	2.1	2.7
2.4	1.7	3.3
3.1	2.0	2.9
3.6	3.6	4.0
1.6	2.0	4.7
2.7	3.6	8.4
1.5	1.7	3.4
1.9	2.3	4.0
3.6	3.2	2.1
3.8	5.2	4.4
14.8	12.7	10.6
14.7	14.9	15.5
2.0	4.0	4.1
	26-Jul-18 DX8Y_007 RRF %RSD 3.1 2.7 1.7 1.6 1.7 2.4 3.1 3.6 1.6 2.7 1.5 1.9 3.6 3.8 14.8 14.7 2.0	26-Jul-18 12-Sep-18 DX8Y_007 DX8Y_032 RRF %RSD RRF %RSD 3.1 4.5 2.7 4.0 1.7 1.9 1.6 1.7 1.7 2.1 2.4 1.7 3.1 2.0 3.1 2.0 1.6 1.7 1.7 3.1 2.4 1.7 3.1 2.0 3.6 3.6 1.5 1.7 1.9 2.3 3.6 3.2 3.8 5.2 14.8 12.7 14.7 14.9 2.0 4.0

© SGS SA 2018 All Rights Reserved

•

MDLS

Aqueous

	Initial MDI
	pg/L
2,3,7,8-TCDD	0.88
1,2,3,7,8-PECDD	1.01
1,2,3,4,7,8-HXCDD	1.12
1,2,3,6,7,8-HXCDD	1.06
1,2,3,7,8,9-HXCDD	0.98
1,2,3,4,6,7,8-HPCDD	0.92
OCDD	3.87
2,3,7,8-TCDF	0.56
1,2,3,7,8-PECDF	1.01
2,3,4,7,8-PECDF	0.94
1,2,3,4,7,8-HXCDF	1.10
1,2,3,6,7,8-HXCDF	0.95
1,2,3,7,8,9-HXCDF	1.09
2,3,4,6,7,8-HXCDF	0.96
1,2,3,4,6,7,8-HPCDF	0.99
1,2,3,4,7,8,9-HPCDF	0.89
OCDF	2.51
-	

Initial MDL pg/g 0.029 2,3,7,8-TCDD 1,2,3,7,8-PECDD 0.043 1,2,3,4,7,8-HXCDD 0.041 1,2,3,6,7,8-HXCDD 0.040 1,2,3,7,8,9-HXCDD 0.038 1,2,3,4,6,7,8-HPCDD 0.069 OCDD 0.341 2,3,7,8-TCDF 0.063 1,2,3,7,8-PECDF 0.038 2,3,4,7,8-PECDF 0.013 1,2,3,4,7,8-HXCDF 0.043 1,2,3,6,7,8-HXCDF 0.033 1,2,3,7,8,9-HXCDF 0.036 2,3,4,6,7,8-HXCDF 0.036 1,2,3,4,6,7,8-HPCDF 0.235 1,2,3,4,7,8,9-HPCDF 0.053 OCDF 0.345

Tissue

	Initial MDL
	pg/g
2,3,7,8-TCDD	0.036
1,2,3,7,8-PECDD	0.032
1,2,3,4,7,8-HXCDD	0.042
1,2,3,6,7,8-HXCDD	0.040
1,2,3,7,8,9-HXCDD	0.041
1,2,3,4,6,7,8-HPCDD	0.055
OCDD	0.094
2,3,7,8-TCDF	0.054
1,2,3,7,8-PECDF	0.045
2,3,4,7,8-PECDF	0.035
1,2,3,4,7,8-HXCDF	0.028
1,2,3,6,7,8-HXCDF	0.036
1,2,3,7,8,9-HXCDF	0.048
2,3,4,6,7,8-HXCDF	0.041
1,2,3,4,6,7,8-HPCDF	0.058
1,2,3,4,7,8,9-HPCDF	0.055
OCDF	0.066

WASTEWATER SAMPLE MS/MS RESULTS VS. HRMS RESULTS

BIOSOLID SAMPLE

TISSUE SAMPLE

CONCLUSIONS

A method for PCDD/PCDF by GC-MS/MS has been developed

- Method is fully validated on a Waters APGC with a Xevo TQ-XS MS system and on an Agilent GC with a 7010B Triple Quadrupole MS.
- Method meets all QC criteria of Method 1613B. HRMS-specific criteria and checks have been adapted to MS/MS
- ATP application has been approved
- SGS AXYS is accredited by CALA and NELAP for this method.
- Our clients are switching to MS/MS methods for Dioxins, PCBs and Pesticides.

SGS AXYS METHOD 16130

EPA APPROVAL STATUS

CWA Methods Home

Methods Update Rule -2019

Approved Chemical Methods

Approved Microbiological Methods

Approved WET Methods

Approved Radiochemical Methods

Approved Industry-Specific Methods

Other CWA Methods: Chemical

Other CWA Methods: Microbiological

Other CWA Methods: Biosolids Methods for Measurement of 2,3,7,8-substituted tetra through octa-chlorinated dibenzo-pdioxins and dibenzofurans in Wastewater

Introduction

NEW EPA has reviewed an <u>Alternate Test Procedure</u> application, SGS AXYS Method ATM 16130 (ATP Case No. N18-0003), "Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo*p*-Dioxins and Dibenzofurans (CDDs/CDFs) Using Waters and Agilent Gas Chromatography-Tandem-Mass Spectrometry (GC/MS/MS)," and the supporting validation data in ATP Case No. N18-0003. EPA determined that this method meets all requirements for measurement of 2,3,7,8-substituted tetrathrough octa-chlorinated dibenzo-*p*-dioxins and dibenzofurans (PCDDs/PCDFs) in wastewater. That is, the performance of this method is substantially similar to methods listed at <u>40 CFR Part 136</u> for measurement of PCDDs/PCDFs in wastewater. https://www.epa.gov/cwa-methods/methodsmeasurement-2378-substituted-tetra-throughocta-chlorinated-dibenzo-p-dioxins

ACKNOWLEDGEMENTS

- Waters: Joe Romano and Rhys Jones for providing the instrument and great technical expertise
- EPA: Lem Walker and his team (and the rules)
- SGS AXYS Senior Chemists: Xinhui Xiu, Robb Tones, Angie Schlak, Kristen Bowes

Coreen.Hamilton@sgs.com WWW.SGSAXYS.COM